159 research outputs found

    Cooperative Radar and Communications Signaling: The Estimation and Information Theory Odd Couple

    Full text link
    We investigate cooperative radar and communications signaling. While each system typically considers the other system a source of interference, by considering the radar and communications operations to be a single joint system, the performance of both systems can, under certain conditions, be improved by the existence of the other. As an initial demonstration, we focus on the radar as relay scenario and present an approach denoted multiuser detection radar (MUDR). A novel joint estimation and information theoretic bound formulation is constructed for a receiver that observes communications and radar return in the same frequency allocation. The joint performance bound is presented in terms of the communication rate and the estimation rate of the system.Comment: 6 pages, 2 figures, to be presented at 2014 IEEE Radar Conferenc

    On bounds and algorithms for frequency synchronization for collaborative communication systems

    Full text link
    Cooperative diversity systems are wireless communication systems designed to exploit cooperation among users to mitigate the effects of multipath fading. In fairly general conditions, it has been shown that these systems can achieve the diversity order of an equivalent MISO channel and, if the node geometry permits, virtually the same outage probability can be achieved as that of the equivalent MISO channel for a wide range of applicable SNR. However, much of the prior analysis has been performed under the assumption of perfect timing and frequency offset synchronization. In this paper, we derive the estimation bounds and associated maximum likelihood estimators for frequency offset estimation in a cooperative communication system. We show the benefit of adaptively tuning the frequency of the relay node in order to reduce estimation error at the destination. We also derive an efficient estimation algorithm, based on the correlation sequence of the data, which has mean squared error close to the Cramer-Rao Bound.Comment: Submitted to IEEE Transaction on Signal Processin

    RadChat: Spectrum Sharing for Automotive Radar Interference Mitigation

    Get PDF
    In the automotive sector, both radars and wireless communication are susceptible to interference. However, combining the radar and communication systems, i.e., radio frequency (RF) communications and sensing convergence, has the potential to mitigate interference in both systems. This article analyses the mutual interference of spectrally coexistent frequency modulated continuous wave (FMCW) radar and communication systems in terms of occurrence probability and impact, and introduces RadChat, a distributed networking protocol for mitigation of interference among FMCW based automotive radars, including self-interference, using radar and communication cooperation. The results show that RadChat can significantly reduce radar mutual interference in single-hop vehicular networks in less than 80 ms

    Multiple-antenna systems in ad-hoc wireless networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (leaves 223-229).The increasing demand for wireless communication services has resulted in crowding of the electromagnetic spectrum. The "spectral-commons" model, where a portion of the electromagnetic spectrum is public and used on an ad-hoc basis, has been proposed to free up spectrum that has been allocated but underutilized. Ad-hoc wireless networks (networks with no central control) are also interesting in their own right as they do not require costly infrastructure, are robust to single-node failures, and can be deployed in environments where it is difficult to deploy infrastructure. The main contributions of this thesis are expressions for the mean and in some cases the variance of the spectral efficiency (bits/second/Hz) of single-hop links in random wireless networks as a function of the number of antennas per node, link-length, interferer density, and path-loss-exponent (an environmental parameter that determines signal decay with distance), under assumptions chosen for realistic implementability in the near future. These results improve our understanding of such systems as they indicate the data rates achievable as a function of tangible parameters like user density and environmental characteristics, and are useful for designers of wireless networks to trade-off hardware costs, data-rates, and user densities. We found that constant mean spectral efficiencies can be maintained in wireless networks with increasing user density by linearly increasing the number of antenna elements per user, or by maintaining a constant fraction of nodes connected to high capacity infrastructure like optical fiber, equipped with antenna arrays. These are promising ways to serve an increasing density of users without increasing bandwidth. Additionally, several interesting features of such networks have been highlighted.(cont.) For instance we found that the mean and variance of spectral efficiencies can be characterized in terms of a parameter called the link rank, which on average equals the number of interferers whose signal power is stronger at a representative receiver than its target transmitter. Rank thus combines the effects of node density and link lengths. Another interesting finding is that mean spectral efficiency in networks with rank-1 links, and equal numbers of antennas at transmit and receive sides can be improved if nodes turn off two thirds of their transmit antennas. These results were derived using infinite random matrix theory and validated using Monte Carlo simulations which were also used to characterize the distribution of spectral efficiencies in such networks.by Siddhartan Govindasamy.Ph.D
    • …
    corecore